51 research outputs found

    Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain.

    Get PDF
    INTRODUCTION: Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) are present in some neuromyelitis optica patients who lack antibodies against aquaporin-4 (AQP4-IgG). The effects of neuromyelitis optica MOG-IgG in the central nervous system have not been investigated in vivo. We microinjected MOG-IgG, obtained from patients with neuromyelitis optica, into mouse brains and compared the results with AQP4-IgG. RESULTS: MOG-IgG caused myelin changes and altered the expression of axonal proteins that are essential for action potential firing, but did not produce inflammation, axonal loss, neuronal or astrocyte death. These changes were independent of complement and recovered within two weeks. By contrast, AQP4-IgG produced complement-mediated myelin loss, neuronal and astrocyte death with limited recovery at two weeks. CONCLUSIONS: These differences mirror the better outcomes for MOG-IgG compared with AQP4-IgG patients and raise the possibility that MOG-IgG contributes to pathology in some neuromyelitis optica patients

    Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain.

    Get PDF
    INTRODUCTION: Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) are present in some neuromyelitis optica patients who lack antibodies against aquaporin-4 (AQP4-IgG). The effects of neuromyelitis optica MOG-IgG in the central nervous system have not been investigated in vivo. We microinjected MOG-IgG, obtained from patients with neuromyelitis optica, into mouse brains and compared the results with AQP4-IgG. RESULTS: MOG-IgG caused myelin changes and altered the expression of axonal proteins that are essential for action potential firing, but did not produce inflammation, axonal loss, neuronal or astrocyte death. These changes were independent of complement and recovered within two weeks. By contrast, AQP4-IgG produced complement-mediated myelin loss, neuronal and astrocyte death with limited recovery at two weeks. CONCLUSIONS: These differences mirror the better outcomes for MOG-IgG compared with AQP4-IgG patients and raise the possibility that MOG-IgG contributes to pathology in some neuromyelitis optica patients

    Spacelike Singularities and Hidden Symmetries of Gravity

    Get PDF
    We review the intimate connection between (super-)gravity close to a spacelike singularity (the "BKL-limit") and the theory of Lorentzian Kac-Moody algebras. We show that in this limit the gravitational theory can be reformulated in terms of billiard motion in a region of hyperbolic space, revealing that the dynamics is completely determined by a (possibly infinite) sequence of reflections, which are elements of a Lorentzian Coxeter group. Such Coxeter groups are the Weyl groups of infinite-dimensional Kac-Moody algebras, suggesting that these algebras yield symmetries of gravitational theories. Our presentation is aimed to be a self-contained and comprehensive treatment of the subject, with all the relevant mathematical background material introduced and explained in detail. We also review attempts at making the infinite-dimensional symmetries manifest, through the construction of a geodesic sigma model based on a Lorentzian Kac-Moody algebra. An explicit example is provided for the case of the hyperbolic algebra E10, which is conjectured to be an underlying symmetry of M-theory. Illustrations of this conjecture are also discussed in the context of cosmological solutions to eleven-dimensional supergravity.Comment: 228 pages. Typos corrected. References added. Subject index added. Published versio

    The Hubble Constant

    Get PDF
    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0H_0 values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68km/s/Mpc and typical errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200

    Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation.

    Get PDF
    6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI(+)] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI(+)]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI(+)] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    Time-Lapse Imaging of the Dynamics of CNS Glial-Axonal Interactions In Vitro and Ex Vivo

    Get PDF
    Myelination is an exquisite and dynamic example of heterologous cell-cell interaction, which consists of the concentric wrapping of multiple layers of oligodendrocyte membrane around neuronal axons. Understanding the mechanism by which oligodendrocytes ensheath axons may bring us closer to designing strategies to promote remyelination in demyelinating diseases. The main aim of this study was to follow glial-axonal interactions over time both in vitro and ex vivo to visualize the various stages of myelination.We took two approaches to follow myelination over time: i) time-lapse imaging of mixed CNS myelinating cultures generated from mouse spinal cord to which exogenous GFP-labelled murine cells were added, and ii) ex vivo imaging of the spinal cord of shiverer (Mbp mutant) mice, transplanted with GFP-labelled murine neurospheres. We demonstrate that oligodendrocyte-axonal interactions are dynamic events with continuous retraction and extension of oligodendroglial processes. Using cytoplasmic and membrane-GFP labelled cells to examine different components of the myelin-like sheath, we provide evidence from time-lapse fluorescence microscopy and confocal microscopy that the oligodendrocytes' cytoplasm-filled processes initially spiral around the axon in a corkscrew-like manner. This is followed subsequently by focal expansion of the corkscrew process to form short cuffs, which then extend longitudinally along the axons. We predict from this model that these spiral cuffs must extend over each other first before extending to form internodes of myelin.These experiments show the feasibility of visualizing the dynamics of glial-axonal interaction during myelination over time. Moreover, these approaches complement each other with the in vitro approach allowing visualization of an entire internodal length of myelin and the ex vivo approach validating the in vitro data

    The needs of foster children and how to satisfy them:A systematic review of the literature

    Get PDF
    Family foster care deeply influences the needs of children and how these are satisfied. To increase our knowledge of foster children’s needs and how these are conceptualized, this paper presents a systematic literature review. Sixty- four empirical articles from six databases were reviewed and categorized (inter-rater agreement K = .78) into four categories: medical, belongingness, psychological and self-actualization needs. The results give a complete overview of needs that are specific to foster children, and what can be implemented to satisfy these needs. This study shows psychological needs are studied more often compared to the other categories, which specially relates to much attention for mental health problems. Furthermore, most articles focus on how to satisfy the needs of foster children and provide no definition or concrete conceptualization of needs. Strikingly, many articles focus on children’s problems instead of their needs, and some even use these terms interchangeably. This review illustrates that future research should employ a proper conceptualization of needs, which could also initiate a shift in thinking about needs instead of problems

    Imaging the Impact of Prenatal Alcohol Exposure on the Structure of the Developing Human Brain

    Get PDF
    Prenatal alcohol exposure has numerous effects on the developing brain, including damage to selective brain structure. We review structural magnetic resonance imaging (MRI) studies of brain abnormalities in subjects prenatally exposed to alcohol. The most common findings include reduced brain volume and malformations of the corpus callosum. Advanced methods have been able to detect shape, thickness and displacement changes throughout multiple brain regions. The teratogenic effects of alcohol appear to be widespread, affecting almost the entire brain. The only region that appears to be relatively spared is the occipital lobe. More recent studies have linked cognition to the underlying brain structure in alcohol-exposed subjects, and several report patterns in the severity of brain damage as it relates to facial dysmorphology or to extent of alcohol exposure. Future studies exploring relationships between brain structure, cognitive measures, dysmorphology, age, and other variables will be valuable for further comprehending the vast effects of prenatal alcohol exposure and for evaluating possible interventions

    Control of style-of-faulting on spatial pattern of earthquake-triggered landslides

    Full text link
    Predictive mapping of susceptibility to earthquake-triggered landslides (ETLs) commonly uses distance to fault as spatial predictor, regardless of style-of-faulting. Here, we examined the hypothesis that the spatial pattern of ETLs is influenced by style-of-faulting based on distance distribution analysis and Fry analysis. The Yingxiu–Beichuan fault (YBF) in China and a huge number of landslides that ruptured and occurred, respectively, during the 2008 Wenchuan earthquake permitted this study because the style-of-faulting along the YBF varied from its southern to northern parts (i.e. mainly thrust-slip in the southern part, oblique-slip in the central part and mainly strike-slip in the northern part). On the YBF hanging-wall, ETLs at 4.4–4.7 and 10.3–11.5 km from the YBF are likely associated with strike- and thrust-slips, respectively. On the southern and central parts of the hanging-wall, ETLs at 7.5–8 km from the YBF are likely associated with oblique-slips. These findings indicate that the spatial pattern of ETLs is influenced by style-of-faulting. Based on knowledge about the style-of-faulting and by using evidential belief functions to create a predictor map based on proximity to faults, we obtained higher landslide prediction accuracy than by using unclassified faults. When distance from unclassified parts of the YBF is used as predictor, the prediction accuracy is 80%; when distance from parts of the YBF, classified according to style-of-faulting, is used as predictor, the prediction accuracy is 93%. Therefore, mapping and classification of faults and proper spatial representation of fault control on occurrence of ETLs are important in predictive mapping of susceptibility to ETLs
    • …
    corecore